WARNING

Prior to export of this document, review for export license requirement is needed.

COPYRIGHT NOTICE

Reproduction of this publication or any portion thereof by any means without the express written permission of AlliedSignal Electronic and Avionics Systems is prohibited. For further information contact the Manager, Technical Publications, AlliedSignal Electronic and Avionics Systems, Olathe, KS 66061. Telephone: (913) 782-0400
SECTION I
GENERAL INFORMATION

1.1 INTRODUCTION 1-1
1.2 EQUIPMENT DESCRIPTION 1-1
1.3 TECHNICAL CHARACTERISTICS 1-1
1.3.1 KN 53 GENERAL INFORMATION 1-1
1.3.2 VOR/LOC CHARACTERISTICS 1-3
1.3.3 GLIDESLOPE CHARACTERISTICS 1-4
1.4 UNITS AND ACCESSORIES 1-4
1.4.1 KN 53 NAVIGATION RECEIVER 1-4
1.4.2 KN 53 INSTALLATION KIT 1-5
1.4.3 ANTENNA COUPLERS 1-6
1.5 ACCESSORIES REQUIRED BUT NOT SUPPLIED 1-6
1.6 LICENSE REQUIREMENTS 1-6
1.7 REQUIREMENTS FOR TSO'D VOR/ILS GLIDESLOPE SYSTEMS 1-6
1.7.1 GLIDESLOPE INDICATOR REQUIREMENTS 1-6
1.7.2 LOCALIZER CONVERTER AND INDICATOR REQUIREMENTS 1-7
1.7.3 VOR CONVERTER AND INDICATOR REQUIREMENTS 1-8
1.7.4 BENDIX/ KING TSO'D SYSTEMS 1-9
1.8 INSTRUCTIONS FOR CONTINUED AIRWORTHINESS 1-9

SECTION II
INSTALLATION

2.1 GENERAL INFORMATION 2-1
2.2 UNPACKING AND INSPECTING EQUIPMENT 2-1
2.3 EQUIPMENT INSTALLATION 2-1
2.3.1 AVIONICS COOLING REQUIREMENTS FOR PANEL MOUNTED EQUIPMENT 2-1
2.3.2 KN 53 INSTALLATION 2-1
2.3.3 MOLEX CONNECTOR ASSEMBLY 2-2
2.3.4 NAV AND GLIDESLOPE ANTENNA INSTALLATION 2-3
2.4 POST INSTALLATION ADJUSTMENTS 2-3

SECTION III
OPERATION

3.1 GENERAL 3-1
3.2 POST-INSTALLATION CHECKOUT 3-1
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1-4</td>
</tr>
<tr>
<td>1-2</td>
<td>1-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>2-4</td>
</tr>
<tr>
<td>2-2</td>
<td>2-7</td>
</tr>
<tr>
<td>2-3</td>
<td>2-9</td>
</tr>
<tr>
<td>2-4</td>
<td>2-11</td>
</tr>
<tr>
<td>2-5</td>
<td>2-15</td>
</tr>
<tr>
<td>2-6</td>
<td>2-17</td>
</tr>
<tr>
<td>2-7</td>
<td>2-19</td>
</tr>
<tr>
<td>2-8</td>
<td>2-21</td>
</tr>
<tr>
<td>2-9</td>
<td>2-23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-2</td>
</tr>
</tbody>
</table>
1.1 INTRODUCTION
This manual contains information relative to the physical, mechanical, and electrical characteristics and installation procedures of the BENDIX/KING Silver Crown KN 53 Navigation Receiver.

1.2 EQUIPMENT DESCRIPTION
The KN 53 is a TSO'D panel mounted 200 channel VHF VOR/LOC Receiver with a 40 channel Glideslope Receiver/Converter. The NAV receiver supplies VOR/LOC information to navigation converters and provides two out of five frequency selection for remote mounted Distance Measuring Equipment. Units that include Mod 10 exhibit increased immunity to interference from FM Broadcast Stations.

1.3 TECHNICAL CHARACTERISTICS
Minimum performance requirements under standard conditions (ambient room temperature and humidity):

1.3.1 KN 53 GENERAL INFORMATION

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>CHARACTERISTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO CATEGORIES:</td>
<td>NAV C40a DO-153, Cat A</td>
</tr>
<tr>
<td>LOC</td>
<td>C36c, Class D, Cat II DO-131</td>
</tr>
<tr>
<td>G/S</td>
<td>C34c, Class D, Cat II DO-132</td>
</tr>
<tr>
<td>ENVIRONMENTAL CATEGORIES:</td>
<td>DO-160 /A1D1/A/KPS/XXXXXXABABA</td>
</tr>
<tr>
<td>ICAO ANNEX 10 FM</td>
<td>ICAO modified (Mod 10) units meet the Intermodulation and Desense criteria of DO195/ED-46A (localizer) and DO-196/ED-22B (VOR).</td>
</tr>
<tr>
<td>INTERFERENCE IMMUNITY</td>
<td>REFERENCE:</td>
</tr>
<tr>
<td>INTERMODULATION:</td>
<td>DESENSE:</td>
</tr>
<tr>
<td>DO-195 Section 2.2.2.4</td>
<td>DO-195 Section 2.2.6</td>
</tr>
<tr>
<td>DO-196 Section 2.2.2.3</td>
<td>DO-196 Section 2.2.8</td>
</tr>
<tr>
<td>ED-46A Section 3.2.3</td>
<td>ED-46A Section 3.15</td>
</tr>
<tr>
<td>ED-22B Section 3.2.2.6</td>
<td>ED-22B Section 3.8</td>
</tr>
</tbody>
</table>
SPECIFICATION

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pre-Mod 10 Units</th>
<th>Post Mod 10 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL DIMENSIONS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width:</td>
<td>6.31 inches (16.0 cm)</td>
<td></td>
</tr>
<tr>
<td>Height:</td>
<td>1.30 inches (3.30 cm)</td>
<td></td>
</tr>
<tr>
<td>Depth:</td>
<td>9.50 inches (24.13 cm)</td>
<td></td>
</tr>
<tr>
<td>WEIGHT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With G/S</td>
<td>2.6 lbs (1.18 kg)</td>
<td>2.4 lbs (1.09 kg)</td>
</tr>
<tr>
<td>Without G/S</td>
<td>2.3 lbs (1.04 kg)</td>
<td>2.1 lbs (0.95 kg)</td>
</tr>
<tr>
<td>With G/S, Rack and Con.</td>
<td>3.0 lbs (1.36 kg)</td>
<td>2.8 lbs (1.25 kg)</td>
</tr>
<tr>
<td>W/O G/S, with Rack & Con.</td>
<td>2.7 lbs (1.23 kg)</td>
<td>2.5 lbs (1.13 kg)</td>
</tr>
<tr>
<td>P/N 066-1067-04 with G/S</td>
<td>2.5 lbs (1.13 kg)</td>
<td>2.3 lbs (1.04 kg)</td>
</tr>
<tr>
<td>P/N 066-1067-05 w/o G/S</td>
<td>2.2 lbs (1.00 kg)</td>
<td>2.0 lbs (0.91 kg)</td>
</tr>
<tr>
<td>POWER REQUIREMENTS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With G/S @ 13.75 Vdc</td>
<td>0.5 A Nominal; 0.7 A Maximum</td>
<td></td>
</tr>
<tr>
<td>With G/S @ 27.5 Vdc</td>
<td>0.3 A Nominal; 0.5 A Maximum</td>
<td></td>
</tr>
<tr>
<td>Without G/S @ 13.75 Vdc</td>
<td>0.4 A Nominal; 0.6 A Maximum</td>
<td></td>
</tr>
<tr>
<td>Without G/S @ 27.5 Vdc</td>
<td>0.25 A Nominal; 0.4 A Maximum</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Current drawn off P532, Pin 4 (switched +A) will directly add to the current drawn by the KN 53.

DME CHANNELING:

- 5 wire 2 x 5 code MHz lines
- 5 wire 2 x 5 code kHz lines
- 1 wire 50 kHz line
- 1 DME common line

ILS ENABLE OUTPUT:

Ground on ILS channels, open otherwise
1.3.2 VOR/LOC CHARACTERISTICS

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>CHARACTERISTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY DISPLAY:</td>
<td>Gas discharge display of one active and one stored frequency. The stored</td>
</tr>
<tr>
<td></td>
<td>frequency is updated by the increment/decrement switch. The transfer button</td>
</tr>
<tr>
<td></td>
<td>trades the active frequency with the stored frequency.</td>
</tr>
<tr>
<td>FREQUENCY MEMORY:</td>
<td>Frequency data stored with no standby power required.</td>
</tr>
<tr>
<td>FREQUENCY STABILITY:</td>
<td>± 0.0015%</td>
</tr>
<tr>
<td>SENSITIVITY:</td>
<td>2.0 μV (hard) maximum will provide a half flag navigation indication.</td>
</tr>
<tr>
<td>SELECTIVITY:</td>
<td>Typical 6 dB at ± 17 kHz, minimum 60 dB at ± 42 kHz</td>
</tr>
<tr>
<td>SPURIOUS RESPONSES:</td>
<td>Down at least 60 dB</td>
</tr>
<tr>
<td>IDENT FILTERS:</td>
<td>15 dB minimum tone rejection</td>
</tr>
<tr>
<td>AGC CHARACTERISTICS:</td>
<td>From 5 μV to 20,000 μV (hard) audio output will not vary more than 3 dB.</td>
</tr>
<tr>
<td>NAV RECEIVER ACCURACY:</td>
<td>±1.5° maximum error /95% probability</td>
</tr>
<tr>
<td>NAV OUTPUT:</td>
<td>Adjustable 0.35 Vrms LOC, 0.5 Vrms VOR output into 20,000 ohms or greater</td>
</tr>
<tr>
<td>AUDIO OUTPUT:</td>
<td>50 mW @ 500 ohms</td>
</tr>
<tr>
<td>NUMBER OF CHANNELS:</td>
<td>200 (50 kHz spacing)</td>
</tr>
<tr>
<td>FREQUENCY RANGE:</td>
<td>108.00 MHz to 117.95MHz</td>
</tr>
</tbody>
</table>
1.3.3 GLIDESLOPE CHARACTERISTICS

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>CHARACTERISTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF CHANNELS:</td>
<td>40 (150kHz spacing)</td>
</tr>
<tr>
<td>FREQUENCY RANGE:</td>
<td>329.15 MHz to 335.00 MHz</td>
</tr>
<tr>
<td>SELECTIVITY:</td>
<td>6 dB max at ±21 kHz, Typically Greater Than 50 dB at ±129 kHz</td>
</tr>
<tr>
<td>SENSITIVITY:</td>
<td>Typically 12 μV (hard) for half flag 20 μV (hard) maximum</td>
</tr>
<tr>
<td>INDICATOR OUTPUT:</td>
<td>No load resistors or wiring changes are necessary for any combination of deviation or alarm flag loads.</td>
</tr>
<tr>
<td>Deviation:</td>
<td>Three 1000 ohm loads max</td>
</tr>
<tr>
<td>Flag:</td>
<td>Three 1000 ohm loads max</td>
</tr>
<tr>
<td>COURSE DEVIATION RESPONSE:</td>
<td>0.6 seconds maximum</td>
</tr>
<tr>
<td>CENTERING ACCURACY:</td>
<td>Less than ±10 μA under all service conditions</td>
</tr>
<tr>
<td>DEFLECTION CHARACTERISTICS:</td>
<td>A difference in depth of modulation of 0.091 ddm or 2 dB tone ratio shall produce a deflection of ±78 μA (±31 μA typical).</td>
</tr>
</tbody>
</table>

1.4 UNITS AND ACCESSORIES

1.4.1 KN 53 Navigation Receiver
Prior to Mod 10 production, the KN 53 Navigation Receiver was available in the following versions with the options listed.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DISPLAY LENS</th>
<th>GLIDESLOPE REC/CONV</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>066-1067-00</td>
<td>DIFFUSED</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>066-1067-01</td>
<td>DIFFUSED</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>066-1067-02</td>
<td>NON-DIFFUSED</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>066-1067-03</td>
<td>NON-DIFFUSED</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>066-1067-04</td>
<td>NONE</td>
<td>YES</td>
<td>SEE NOTE 1</td>
</tr>
<tr>
<td>0661067-05</td>
<td>NONE</td>
<td>NO</td>
<td>SEE NOTE 1</td>
</tr>
</tbody>
</table>

Table 1: AVAILABLE VERSIONS BEFORE MOD 10 PRODUCTION
After Mod 10 has been incorporated, only the following versions are available from the factory.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>LENS DISPLAY</th>
<th>GLIDESLOPE RECEIVER</th>
<th>MOD 10 INCORPORATED</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>066-1067-00</td>
<td>DIFFUSED</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>066-1067-04</td>
<td>NONE</td>
<td>YES</td>
<td>YES</td>
<td>SEE NOTE 1</td>
</tr>
<tr>
<td>066-1067-10</td>
<td>DIFFUSED</td>
<td>YES</td>
<td>YES</td>
<td>14/28V LIGHTING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5G BEZEL STYLING</td>
</tr>
</tbody>
</table>

Table 2: VERSIONS AVAILABLE FROM FACTORY AFTER MOD 10 INCORPORATION

NOTE: 1. The -04 and -05 versions of the KN 53 have 5 Volt lighting and the bezel has been removed. These versions of the KN 53 are used in a system with a common bezel such as the CNI 5000.

1.4.2 KN 53 INSTALLATION KIT

The KN 53 Installation kit P/N 050-01712-0000 is available in one version. The kit and its contents are listed below.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>VENDOR NAME AND P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>030-00101-0002</td>
<td>PANEL MOUNT PLUG</td>
<td>2</td>
<td>Ted Manf Corp. 9-30-10</td>
</tr>
<tr>
<td>030-01094-0053</td>
<td>CONNECTOR</td>
<td>1</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>030-01107-0030</td>
<td>CONNECTOR TERM 30T</td>
<td>1</td>
<td>Molex Inc. 08-05-0301</td>
</tr>
<tr>
<td>057-02193-0003</td>
<td>DECAL NAV 1</td>
<td>1</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>057-02193-0004</td>
<td>DECAL NAV 2</td>
<td>1</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>089-02051-0024</td>
<td>NUT SPEED U 6-32</td>
<td>4</td>
<td>Tinnerman Prod Inc. C8095-632</td>
</tr>
<tr>
<td>089-02353-0001</td>
<td>NUT CLIP 6-32</td>
<td>4</td>
<td>Monadnock Co. 294667</td>
</tr>
<tr>
<td>089-05903-0007</td>
<td>SCR PHP 4-40 X 7/16</td>
<td>2</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>089-06012-0008</td>
<td>SCR FHP 6-32 X 1/2</td>
<td>4</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>089-08003-0034</td>
<td>WSHR SPLT LK #4</td>
<td>2</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>089-08252-0030</td>
<td>WASHER</td>
<td>4</td>
<td>Bendix/King N/A</td>
</tr>
<tr>
<td>090-00019-0007</td>
<td>RING RTNR .438</td>
<td>2</td>
<td>Bendix/King N/A</td>
</tr>
</tbody>
</table>
1.4.3 ANTENNA COUPLERS

In some KN 53 installations it may be desirable to allow the Glideslope Receiver to operate off the aircraft's navigation antenna. In other installations it may be desirable to operate two NAV/LOC receivers or two GS receivers off a common antenna. Low-loss couplers are available to allow such operation; an overall degradation in sensitivity will be realized due to the insertion loss of the coupler. The installer must verify that acceptable sensitivity and proper system performance is realized in a system that utilizes a coupler. A minimum of 20 dB of GS receiver-to-receiver isolation is required in dual installations employing a KN 53 GS receiver.

Examples of some common couplers are listed below. Contact the coupler manufacturer for specification or information on the TSO status of the couplers listed.

<table>
<thead>
<tr>
<th>Coupler to allow one antenna to operate</th>
<th>Dayton-Granger (305) 463-3451</th>
<th>Dome Margolin (516) 595-6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>One NAV and one GS</td>
<td>GSNC 20-05</td>
<td>H22-1</td>
</tr>
<tr>
<td>Two NAVs</td>
<td>DRC 20-04</td>
<td>H21-1</td>
</tr>
<tr>
<td></td>
<td>or 14830</td>
<td></td>
</tr>
<tr>
<td>Two Glideslopes</td>
<td>DSGC 20-02</td>
<td>H24-1</td>
</tr>
<tr>
<td></td>
<td>or 16009</td>
<td></td>
</tr>
<tr>
<td>Two NAVs and two GSs</td>
<td>DOC 20-06</td>
<td>H69-1</td>
</tr>
<tr>
<td></td>
<td>or 16010</td>
<td></td>
</tr>
</tbody>
</table>

1.5 ACCESSORIES REQUIRED BUT NOT SUPPLIED

A. Navigation Antenna and Cables
B. Glideslope Antenna and Cables KA 22 (P/N 071-1008-00) or equivalent
C. 300 to 1000 ohm Headphones
D. VOR/LOC Converter and Indicator, Glideslope Indicator. Various BENDIX/KING Options. See Section 1.7.4

1.6 LICENSE REQUIREMENTS

No special federal communications license is required to operate the KN 53.

1.7 REQUIREMENTS FOR TSO'D VOR/ILS GLIDESLOPE SYSTEMS

The additional units used in conjunction with the KN 53 must meet the specifications listed below to comprise a completely TSO'D navigation system.

1.7.1 GLIDESLOPE INDICATOR REQUIREMENTS

A. The indicator shall meet all applicable requirements of TSO C34c.
B. Centering current to be 0 ± 6 μA with a 95% probability under all environmental conditions listed in RTCA Paper DO-132, Minimum Performance Standards - Airborne ILS Glideslope Receiving Equipment, Paragraph 2.1 sub-paragraph b, Centering Accuracy.
C. The course deviation pointer shall visibly deflect at least + 5/8 inch along its scale when the input current is changed from zero to ± 150 μA.

D. Deflection linearity over the deflection range from zero to 150 μA shall be within 10% of being proportional to the input current. Additionally, as the current is increased beyond that producing full scale deflection to a value of ± 685.7 μA, the indicator deflection shall not decrease.

E. When the input current is abruptly changed from any value from zero to ± 150 μA, the pointer shall reach 67% of its ultimate deflection within 2 seconds and pointer overshoot shall not exceed 5%.

F. The input impedance shall be 1 kΩ ± 5% for both the deviation indicator and warning signal.

G. A warning signal input current of 150 μA or less shall produce a fully visible warning flag. A warning signal input current of 260 μA or greater shall produce a fully concealed warning flag.

1.7.2 LOCALIZER CONVERTER AND INDICATOR REQUIREMENTS

A. The converter and indicator shall meet all applicable requirements of C36c.

B. The localizer centering current to be 0 ± 6 μA with a 95% probability under all environmental conditions listed in RTCA Paper DO-131, Minimum Performance Standards-Airborne ILS Localizer Receiving Equipment, Paragraph 2.1 sub-paragraph b, Centering Accuracy.

C. The course deviation pointer shall visibly deflect at least ± 3/8 inch along its scale when the input current is changed from zero to ± 90 μA.

D. Deflection linearity over the range from zero to ± 90 μA shall be within 10% of being proportional to the difference in depth of modulation of the 90 and 150 Hz signals, or the deflection shall be within 5% of standard deflection (± 90 μA) of being proportional to the difference in depth of modulation, whichever is greater.

Additionally, as the difference in depth of modulation is increased beyond that producing full scale deflection (± 150 μA) to a value of 0.5 ddm, the course deviation pointer deflection shall not decrease.

E. When the input current is abruptly changed from zero to ± 150 μA, the pointer shall reach 67% of its ultimate deflection within 2 seconds and pointer overshoot shall not exceed 5%.

F. The input impedance of the indicator for both the deviation indicator and warning signal shall be 1 kΩ ±5%.
G. A warning signal input current of 125 µA or less shall produce a fully visible warning flag. A warning signal input current of 260 µA or greater shall produce a fully concealed warning flag.

1.7.3 VOR CONVERTER AND INDICATOR REQUIREMENTS

A. The converter and indicator shall meet all applicable requirements of TSO C40a.

B. The bearing error shall be less than 3° with a 95% probability under all environmental conditions listed in RTCA Paper DO-153, Minimum Performance Standards-Airborne VOR Receiving Equipment, Paragraph 2.1, sub-paragraph 2.1.2, Bearing Accuracy.

NOTE: For older equipment the Bearing Error shall be less than 2.7° with a 95% probability under all environmental conditions listed in RTCA PAPER DO-114, Minimum Performance Standards-Airborne VOR Receiving Equipment, Paragraph 2.1, Sub-Paragraph B, Bearing Accuracy.

C. The course deviation pointer shall visibly deflect at least 1/2 inch (for DO-153) or 3/8 inch (for DO-114) along its scale when the input current is changed from zero to ± 150 µA.

D. Deflection Linearity

1. The deflection shall be proportional to the change in phase between the two components of the standard VOR test signal, within 20% of the deflection produced by a 10° (± 150 µA) change in phase. This requirement shall be met at all deflections produced when the phase difference is varied from +10° to -10° of that producing an "on course" indication.

2. The pointer deflection shall not decrease as the phase difference is increased from that producing an "on course" indication to that producing an indication which is equivalent to ± 80° from "on course".

E. Deflection Response

1. When the difference in phase between the two components of an "on course" standard VOR test signal is abruptly changed, the pointer shall reach 70% of its ultimate position within 3 seconds and the pointer overshoot shall not exceed 20%.

F. The input impedance of the indicator for both the bearing error and warning signal shall be 1 kΩ ± 5%.

G. A warning signal input current of 125 µA or less shall produce a fully visible warning flag. A warning signal input current of 266 µA or greater shall produce a fully concealed warning flag.

H. The input impedance of the TO/FROM indicator shall be 200 ohms ±200 µA sensitivity.
1.7.4 BENDIX/KING TSO'D SYSTEMS

A. The following systems when used in conjunction with the KN 53, P/N 066-1067-00/02/04/10 will meet all TSO system requirements.
 1. KI 204
 2. KN 72, KI 206
 3. KN 72, KI 525A
 4. KI 209

B. The following systems when used in conjunction with the KN 53, P/N 066-1067-01/03/05, will meet all TSO system requirements.
 1. KI 203
 2. KI 208

1.8 INSTRUCTIONS FOR CONTINUED AIRWORTHINESS

The instructions for continued airworthiness given in the TC or STC approvals for this product supplements or supercedes the instructions for continued airworthiness in this manual.

Most AlliedSignal products are designed and manufactured to allow "on condition maintenance." On condition maintenance is described as follows; There are no periodic service requirements necessary to maintain continued airworthiness. No maintenance is required until the equipment does not properly perform it's intended function. When service is required, a complete performance test should be accomplished following any repair action. Consult the appropriate unit Maintenance/Overhaul Manual for complete performance test information.
2.1 GENERAL INFORMATION
This section contains information relative to the installation and wiring of the KN 53. A close adherence to methods and procedures discussed herein is required.

2.2 UNPACKING AND INSPECTING EQUIPMENT
Exercise extreme care when unpacking the equipment. Make a visual inspection of the unit for evidence of damage incurred during shipment. If a claim for damage is to be made, save the shipping container to substantiate the claim. The claim should be promptly filed with the transportation company. It would be advisable to retain the container and packaging material after all equipment has been removed in the event that equipment storage or re-shipment should become necessary.

2.3 EQUIPMENT INSTALLATION

2.3.1 Avionics Cooling Requirements For Panel Mounted Equipment
The greatest single contributor to increased reliability of all modern day avionics is to limit the maximum operating temperature of the individual units. While modern day individual circuit designs consume much less electrical energy, the watts per cubic inch dissipated within avionics units remains much the same due to high density packaging techniques utilized. Consequently, the importance of providing avionics stack cooling is still with us.
While an individual unit may not require forced air cooling, the combined heat load of several units operating in a typical avionics stack will significantly degrade the reliability of the avionics if provisions for stack cooling are not incorporated in the initial installation. Recommendations on stack cooling are contained in Bendix/King Installation Bulletin #55 and 258. Failure to provide stack cooling will certainly lead to increased avionics maintenance costs and may void the Bendix/King warranty.

2.3.2 KN 53 INSTALLATION (Figures 2-1 through 2-9)

A. Plan a location on the aircraft panel that is clearly visible and within easy access of the pilot.

B. Avoid mounting the KN 53 close to heater vents or other high heat sources.

C. Compass safe distance is 8 inches for worst case deflection of one degree.

D. When installing two or more panel mounted units in a stack, the mounting trays shall be spaced .050 inches (.127 cm) apart. Newer style mounting trays have had .025 inch (.063 cm) dimples built in, top and bottom, both sides, so that two new style trays will automatically be spaced properly.
E. Install the mounting rack in the aircraft using 6-32 x 1/2 flat head philips screws (P/N 089-06012-0008) and 6-32 clip nuts (P/N 089-02353-0001). The screws are inserted from the inside through the holes in the sides of the mounting rack.

F. Connect the harness wires to the connector pins and insert the connector pins into the rear of the Molex connector. See Figure 2-1.

G. Mount the Molex connector in the two holes at the rear of the mounting rack. Use two 4-40 x 7/16 pan head, philips screws (P/N 089-05903-0007) and two #4 split lock washers (P/N 089-08003-0034). Orient the connector so the polarizer key is shown in Figure 2-5.

H. Connect the antenna cables to the antenna connectors (Figure 2-2).

I. Insert the antenna connector(s) through the hole in the rear of the mounting rack from the outside. Secure each antenna connector with a spacer (P/N 089-08252-0030) and retaining ring (P/N 090-00019-0007) installed from the inside of the rack.

J. Install the KN 53 into the mounting rack and secure by turning the hold down adjustment screw (accessible through a hole in the front panel) clockwise with an Allen hex wrench until it is locked into place (Figure 2-4).

2.3.3 MOLEX CONNECTOR ASSEMBLY (Figure 2-1)

A. Solderless Contact Terminal Assembly using Molex Crimper
 Refer to instructions in Figure 2-1.

B. Solderless Contact Terminal Assembly using Pliers
 1. Strip each wire 5/32" for contact terminal (Part Number 030-01107-0030). (The last two digits of the contact terminal part number indicate the number of terminals furnished).
 2. Tin the exposed conductor.
 3. Using needle nose pliers, fold over each conductor tab in turn, onto the exposed conductor. When both tabs have been folded, firmly press the tabs against the conductor.
 4. Repeat Step 3 for insulator tabs.
 5. Apply a small amount of solder (using minimum heat) to the conductor/tab connection to assure a good electromechanical joint.
C. Contact Insertion into Molex Connector Housing
 1. After the contact terminals have been installed on the wiring harness, the
 contact terminals can be inserted into the proper location in the connector
 housing (P/N 030-01094-0053). The terminal cannot be inserted upside
 down. Be sure to push the terminal all the way in, until a click can be felt or
 heard.
 2. The self-locking feature can be tested by gently pulling on the wire.

D. Extraction of Contact from Molex Connector
 1. Slip the flat narrow blade of a Molex contact ejector tool, HT-1884 (P/N 047-
 05099-0001), under the contact on the mating side of the connector. By turn-
 ing the connector upside down one can see the blade slide into the stop.
 2. When the ejector is slid into place, the locking key of the contact is raised,
 allowing the contact to be removed by pulling moderately on the lead.
 3. Neither the contact or position is damaged by removing a contact; however,
 the contact should be checked visually before reinstalling in connector, to be
 certain that retaining tab "A" extends as shown (See Figure 2-1) for retention
 in connector.

2.3.4 NAV AND GLIDESLOPE ANTENNA INSTALLATION

A. Antenna should be installed as per Advisory Circular 43.13-2 Methods and Guide-
 lines.
B. When multiple receivers will share a common antenna, refer to Section 1.4.3 for
 information on antenna couplers.

2.4 POST INSTALLATION ADJUSTMENTS
The KN 53 has been calibrated to operate with the standard Bendix/King systems noted in Sec-
tion 1. Adjustments are accessible through the top and bottom covers to fine tune the navigation
system if required. The physical location of the adjustments are noted in Figure 2-4 and their
 electrical functions are explained in Sections IV, V, and VI of the KN 53 Maintenance Manual (P/
N 006-05174-OOXX). When adjustments are required, the self-stick covers should be replaced.

A. Composite level set, R87 (R368 - post Mod 10), has been preset at the factory for
 standard 0.35 RMS LOC, 0.50 RMS VOR output.

B. Display dimmer, R656 (R546 - post Mod 10), has been preset to the Bendix/King
 standard. R656 (R546 - post Mod 10) may be adjusted to light balance the aircraft
 panel. The adjustment potentiometer has its maximum effect on night light condi-
 tion and minimal effect on daylight condition.

C. Glideslope adjustments
 1. Glideslope course width, R425.
 2. Glideslope centering, R511.
 3. Glideslope flag, R510.
INSULATOR CRIMP

TAB A

CONDUCTOR CRIMP

SOLDERLESS CONTACT TERMINAL
P/N 030-01107-0030

HAND EJECTOR
P/N 047-05099-0001
MOLEX P/N HT-1884

FIGURE 2-1 MOLEX INFORMATION
(Sheet 1 of 3)
Holding the hand crimpers as shown, release the crimper's ratchet pawl and open by squeezing tightly on the handles, and then releasing pressure.

Close crimpers until ratchet begins to engage. Then insert the terminal into the jaws from the back side. (See Figures at bottom of page) For 24 to 30AWG wire, it will be necessary to start the crimp in jaw A and then complete it in jaw B.

<table>
<thead>
<tr>
<th>JAW</th>
<th>TERMINAL</th>
<th>WIRE SIZE</th>
<th>INSULATION RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>030-01107-0030</td>
<td>18 TO 24 AWG</td>
<td>.110 TO .055</td>
</tr>
<tr>
<td>B</td>
<td>030-01107-0030</td>
<td>24 TO 30 AWG</td>
<td>.055 TO .030</td>
</tr>
</tbody>
</table>

Terminal is in correct position when insulation tabs are flush with outside face of crimp jaws.

FIGURE 2-1 MOLEX INFORMATION
(Sheet 2 of 3)
Once the terminal is in the correct position, close the jaws gently until the terminal is held loosely in place. Push wire stop down so that it rests snugly behind the contact portion of the terminal.

Strip the wire insulation back 1/8 inch and insert the wire through the insulation tabs into the conductor tabs until the insulation hits the conductor jaw face or until the conductor touches the wire stop.

Squeeze the handles until the crimp jaws close and the ratchet releases.

Straighten the terminal if necessary, then release the plier grips and remove the crimped terminal.

CRIMPING PRESSURE ADJUSTMENT

If too much or too little pressure is needed to release the crimper's ratchet pawl at the end of the crimp stroke, the ratchet can be easily adjusted. A spanner wrench provided with the tool can be used to loosen the lock nut, and rotate the keyed stud clockwise for increased pressure and counter-clockwise for decreased pressure. Once the desired pressure has been set, the lock nut must be tightened again. Newer models may have a screwdriver adjustment.

FIGURE 2-1 MOLEX INFORMATION

(Sheet 3 of 3)
1. Trim outer jacket to dimension shown.

2. Comb out braid and trim dielectric to dimension shown.

3. Taper braid over dielectric and slip cable nut, washer (when furnished) and V-groove gasket over cable. Position braid clamp with shoulder tight against outer jacket. Fold braid back over braid clamp.

4. Trim off excess braid. Position washer and gasket as shown and solder pin to center conductor. Place insulator over pin, (if furnished).

Insert cable and hardware into connector housing and tighten cable nut.

Figure 2-2 030-00005-0000 connector assembly
(Dwg. No. 155-05267-0000 Rev 0)
NOTES:

1. AVOID APPLYING EXCESSIVE HEAT TO CONNECTOR BODY.
 HEAT SINK SPRING CONTACTS DURING SOLDERING.

WARNING

CLOSE ADHERENCE TO THIS PROCEDURE IS NECESSARY
FOR AN INTERFERENCE-FREE INSTALLATION.

FIGURE 2-3
ANTENNA CONNECTOR
FIGURE 2-4
KN 53 OUTLINE AND MOUNTING DRAWING
Dwg. No. 155-05313-0000 Rev AA
Page 1 of 2
FIGURE 2-5
KN 53 INSTALLATION DRAWING
Dwg. No. 155-05312-0000 Rev 0
FIGURE 2-6
KN 53 TO KI 203/204 INTERCONNECT DRAWING
Dwg. No. 155-01328-0000 Rev AA
FIGURE 2-7
KN 53 TO KN 72/KI 206 INTERCONNECT DRAWING
Dwg. No. 155-01329-0000 Rev AA
3.1 GENERAL

It is recommended that power to the KN 53 be turned on only after engine start-up, as this procedure increases the reliability of the solid state circuitry.

The KN 53 front panel controls consist of the following. Reference Figure 3-1.

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OFF/VOL/IDENT</td>
</tr>
<tr>
<td>B</td>
<td>FREQUENCY SELECT</td>
</tr>
<tr>
<td>C</td>
<td>FREQUENCY TRANSFER</td>
</tr>
</tbody>
</table>

The unit is turned on by rotating Control A clockwise. The power off position is felt by counterclockwise rotation into a positive switch detent. The NAV volume output is increased by clockwise rotation of Control A. Voice NAV information only is heard when Control A is pushed in. When Control A is pulled out, the I.Dent signal plus voice information may be heard.

The outer knob of Control B is MHz select and moves CW (up) or CCW (down) in one MHz steps. The inner knob of Control B is the KHz select and moves CW (up) or CCW (down) in 50 KHz steps.

NOTE: To increase frequency, rotate knobs clockwise; to decrease frequency, rotate knobs counterclockwise. Moving either knob of Control B will only update the standby displayed frequency. Remote DME, Internal Glideslope, and ILS channeling are also performed by this control.

The STANDBY frequency can be moved to the USE (active) frequency by momentarily depressing the frequency transfer switch, Control C. (i.e. when the frequency transfer switch is energized the USE frequency and STANDBY frequency trade places).

The KN 53 gas discharge display brightness will automatically compensate for changes in ambient light level. The dimming is controlled by a photocell mounted behind the front panel lens to the left of the display.

The KN 53 has 2 x 5 DME channeling information outputs. DME's (like the Bendix/King KN 62A) can be channeled by the KN 53 outputs. (The KN 62A must be in the RMT mode). See Section II of this Installation Manual for interconnect information.

3.2 POST-INSTALLATION CHECKOUT

An operational performance flight test is recommended after the installation is completed to insure satisfactory performance of the equipment in its normal environment.
To check the VOR/ILS system, select a VOR frequency within a forty nautical mile range. Listen to the VOR audio and insure that no electrical interference such as magneto noise is present. Check the tone identifier filter operation. Fly inbound or outbound on a selected VOR radial and check for proper LEFT-RIGHT and TO-FROM indications. Check the VOR accuracy.

NOTE: At low altitudes VOR Ground Station Scalloping may be present.

Flight test the ILS operation by flying a simulated ILS approach. Check localizer LEFT-RIGHT deflection and, if applicable, glideslope deflection. Check the localizer accuracy in relation to the ILS runway. Check the glideslope accuracy in relation to the published ILS approach altitude.

NOTE: 066-1067-00 ILLUSTRATED. All control locations/functions are identical between various flavors.

FIGURE 3-1 KN 53 CONTROL FUNCTIONS